
95-865 Unstructured Data Analytics

Slides by George H. Chen

Last lecture: Text generation with generative
pre-trained transformers; a few more deep

learning concepts; course wrap-up

HW2 Questionnaire (1/2)

24 hours, oh no!

Please do make use of OH
if you’re having trouble

HW2 Questionnaire (2/2)
• Lots of students said that interpreting clusters or topics can be hard

• Interpreting clusters or topics can indeed be challenging!

• Even with newer topic models developed (such as BERTopic),
interpretation can still be challenging depending on the dataset

• Lots of students said that t-SNE plots are confusing to interpret

• Yes, this is indeed the case…

• A lot of students find StatQuest helpful

• A number of students said that they used Bilibili
(I had no idea what this was until I looked it up)

• A number of students expressed that it wasn't straightforward
keeping track of what different sklearn models' fit/transform/etc do

Is this only in Chinese?

• If you have some ground truth annotation that can be used to help
color the data points, it might be easier seeing what's going on…

• This is good to write down on a cheatsheet including shape info
for what comes out of transform/predict/predict_proba

(Flashback) Predict Next Character
The opioid epidemic or opioid crisis is the rapid increase
in the use of prescription and non-prescription opioid
drugs in the United States and Canada in the 2010s.

Let’s treat this string as a single data point (a time series of tokens)

For tokenization, let’s split by individual characters
(so no need to use spaCy)

Given ['T'], predict next character 'h'

Given ['T', 'h'], predict next character 'e'

Given ['T', 'h', 'e'], predict next character ' '

Given ['T', 'h', 'e', ' '], predict next character 'o'

…

If the string has L + 1 characters total, then there are L such prediction tasks

Reminder

'The opi'Training point:

Input to RNN language model: 'The op'

Desired output of RNN language model: 'he opi'

Technically, the input is encoded as token IDs:
[48, 60, 57, 1, 67, 68]

[60, 57, 1, 67, 68, 61]

Technically, the desired output is encoded as token IDs:

44

60

57

1

67

68

RNN Language Model
'T'

'h'

'e'

' '

'o'

'p'

44

60

57

1

67

68

encode as
token ID

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

RNN layer

Try to predict 'h'

Try to predict 'e'

Try to predict ' '

Try to predict 'o'

Try to predict 'p'

Try to predict 'i'

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

Linear layer with softmax activation,
output nodes = vocab size

Train using minibatch gradient descent with cross entropy loss
(similar to other models we've seen in lecture)

44

60

57

1

67

68

RNN Language Model
'T'

'h'

'e'

' '

'o'

'p'

44

60

57

1

67

68

encode as
token ID

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

RNN layer

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

Linear layer with softmax activation,
output nodes = vocab sizeRNN layer

We can
stack
RNN

layers!

Train using minibatch gradient descent with cross entropy loss
(similar to other models we've seen in lecture)

How to Generate Text After Model Training

Em
be

dd
in

g

C
la

ss
ifi

er

output is a probability
distribution over characters

randomly sample from this distribution
to generate next character!

'e'

start with some
initial character

44'T'

encode as
token ID

How to Generate Text After Model Training

44'T' 44

Em
be

dd
in

g

C
la

ss
ifi

er

encode as
token ID

output is a probability
distribution over characters

randomly sample from this distribution
to generate next character!

's'

Em
be

dd
in

g

C
la

ss
ifi

er

57'e'

start with some
initial character

Keep generating text in this manner!

An Alternative Solution:
Generative Pre-trained Transformers

(GPTs)

Explicitly figure out how to weight the contribution of the
current & past time steps

44

60

57

1

67

68

(Flashback) RNN Language Model
'T'

'h'

'e'

' '

'o'

'p'

encode as
token ID

44

60

57

1

67

68

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

RNN layer

Try to predict 'h'

Try to predict 'e'

Try to predict ' '

Try to predict 'o'

Try to predict 'p'

Try to predict 'i'

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

Linear layer with softmax activation,
output nodes = vocab size

44

60

57

1

67

68

'T'

'h'

'e'

' '

'o'

'p'

encode as
token ID

44

60

57

1

67

68

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Try to predict 'h'

Try to predict 'e'

Try to predict ' '

Try to predict 'o'

Try to predict 'p'

Try to predict 'i'

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

Linear layer with softmax activation,
output nodes = vocab size

This sort of dependence is "causal": any time step can
only depend on its current input and all past inputs

(and not on future time steps’ inputs)

encode as
token ID

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

Try to predict ' '

C
la

ss
ifi

er

'T'

'h'

'e'

44

60

57

How should we combine information from the input embeddings?

Another issue: the input embeddings by themselves do not
contain information about when the time steps happened

Bad idea: have this box correspond to
averaging the 3 input embeddings

Taking a simple average is too simplistic…
need something more clever…

Let's address this issue first

Let’s focus on time step 2’s prediction task for the moment…

encode as
token ID

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

Try to predict ' '
C

la
ss

ifi
er

'T'

'h'

'e'

44

60

57

0Position:

Position: 1

2Position:

Each embedding: 1D table with D entries

a hyperparameter
(512 in the demo)

encode as
token ID

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

Try to predict ' '
C

la
ss

ifi
er

'T'

'h'

'e'

44

60

57

0Position:

Position: 1

2Position:

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
+

+

+

Pink Embedding layers share the same parameters

Cyan Embedding layers share the same parameters

Each embedding: 1D table with D entries

a hyperparameter
(512 in the demo)

Try to predict ' '
C

la
ss

ifi
er

Pink Embedding layers share the same parameters

Cyan Embedding layers share the same parameters

We next discuss what goes in this box

Each embedding: 1D table with D entries

encode as
token ID

Em
be

dd
in

g

'T' 44

0Position:

Em
be

dd
in

g

+

Em
be

dd
in

g

'h' 60

Position: 1

Em
be

dd
in

g

+

Em
be

dd
in

g

'e' 57

2Position:

Em
be

dd
in

g

+

a hyperparameter
(512 in the demo)

encode as
token ID

Em
be

dd
in

g

'T' 44

0Position:

Em
be

dd
in

g

+

Em
be

dd
in

g

'h' 60

Position: 1

Em
be

dd
in

g

+

Em
be

dd
in

g

'e' 57

2Position:

Em
be

dd
in

g

+

encode as
token ID

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

'T'

'h'

'e'

44

60

57

0Position:

Position: 1

2Position:

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

+

+

+

Li
ne

ar
Li

ne
ar

Li
ne

ar

key

query

value

“Here's how to find me”

“Here's what I'm looking for”

“Here's my information”

Li
ne

ar
Li

ne
ar

Li
ne

ar

key

query

value
Li

ne
ar

Li
ne

ar
Li

ne
ar

key

query

value

keys/queries/values are
1D tables with the
same # entries H

key[0]

query[0]

value[0]

key[1]

query[1]

value[1]

key[2]

query[2]

value[2]

a hyperparameter
(256 in the demo)

How much should time step 1’s information contribute?

How much should time step 2’s information contribute?

Li
ne

ar
Li

ne
ar

Li
ne

ar

key

query

value

Li
ne

ar
Li

ne
ar

Li
ne

ar

key

query

value

Li
ne

ar
Li

ne
ar

Li
ne

ar

key

query

value

key[0]

query[0]

value[0]

key[1]

query[1]

value[1]

key[2]

query[2]

value[2]

w[0] = np.dot(query[2], key[0])

w[1] = np.dot(query[2], key[1])

w[2] = np.dot(query[2], key[2])

Remember: at this point, we are only computing the
output for time step 2

How much should time step 0’s information contribute
(to the output for time step 2)?

Idea: make the contribution amount dependent on:

w_norm = softmax(w)

Let’s normalize the weights so they are probabilities:

Output at time step 2:
w_norm[0]*value[0] + w_norm[1]*value[1] \

+ w_norm[2]*value[2]

Output at time step 2:

Li
ne

ar
Li

ne
ar

Li
ne

ar

key

query

value

Li
ne

ar
Li

ne
ar

Li
ne

ar

key

query

value

Li
ne

ar
Li

ne
ar

Li
ne

ar

key

query

value

key[0]

query[0]

value[0]

key[1]

query[1]

value[1]

key[2]

query[2]

value[2]

Remember: at this point, we are only computing the
output for time step 2

How much should time step 1’s information contribute?

How much should time step 2’s information contribute?

w[0] = np.dot(query[2], key[0])

w[1] = np.dot(query[2], key[1])

w[2] = np.dot(query[2], key[2])

Idea: make the contribution amount dependent on:

Let’s normalize the weights so they are probabilities:

w_norm[0]*value[0] + w_norm[1]*value[1] \
+ w_norm[2]*value[2]

w_norm = softmax(w / np.sqrt(H))

In practice: include this division (helps with training)

How much should time step 0’s information contribute
(to the output for time step 2)?

encode as
token ID

Try to predict ' '
C

la
ss

ifi
er

'T'

'h'

'e'

44

60

57

0Position:

Position: 1

2Position:

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

w_norm[0]*value[0] + w_norm[1]*value[1] \
+ w_norm[2]*value[2]

1D table with H entries

This box is called a self-attention (SA) head
SA

 h
ea

d

+

+

+

The hope: keys, queries, and values that
get learned help with prediction

But what if we get unlucky and the keys,
queries, and values found aren’t great

(or only focus on a single concept)?

Analogy: imagine if we used a Conv2d
layer but only used 1 filter and hoped

that the 1 filter captures everything

The fix: use many self-attention heads

(we’re finding how much to pay attention to
current/previous time steps of the time series)

Try to predict ' '

C
la

ss
ifi

er

SA
 h

ea
d SA

 h
ea

d

encode as
token ID

'T'

'h'

'e'

44

60

57

0Position:

Position: 1

2Position:

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

+

+

+

co
nca

tenate

Self-attention (whether single or multi head)
could be thought of as gathering information

from the current & previous time steps

Rough intuition: after gathering
information, it helps to “think” on the

information gathered

Multi-head self-attention

⟹ Stick an MLP after self-attention

Example: 2 SA heads (second one is in red)

Try to predict ' '

C
la

ss
ifi

er

SA
 h

ea
d SA

 h
ea

d

encode as
token ID

'T'

'h'

'e'

44

60

57

0Position:

Position: 1

2Position:

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

+

+

+

co
nca

tenate

Self-attention (whether single or multi head)
could be thought of as gathering information

from the current & previous time steps

Rough intuition: after gathering
information, it helps to “think” on the

information gathered

Multi-head self-attention

⟹ Stick an MLP after self-attention

M
LP

Example: 2 SA heads (second one is in red)

There are a few implementation details
that I won’t go over in lecture

Basically, it turns out that when neural nets get very deep,
training can be more difficult without some now-standard tricks

(these tricks work with many neural net architectures, not just GPTs)

• LayerNorm
• Residual connections
• Dropout

You’re not expected to
know these technical details

Also, there are some standard strategies for initializing GPT training

C
la

ss
ifi

er

SA
 h

ea
d SA

 h
ea

d

encode as
token ID

'T'

'h'

'e'

44

60

57

0Position:

Position: 1

2Position:

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

+

+

+

co
nca

tenate

Multi-head self-attention

M
LP

La
ye

rN
or

m
La

ye
rN

or
m

La
ye

rN
or

m

+

La
ye

rN
or

m

+

“residual connections”

Dr
op

ou
t

Dr
op

ou
t

Each SA head uses Dropout to
randomly disallow some past
time steps from contributing

This entire box is a decoder-only transformer

Generative Pre-trained Transformer (GPT)

44

60

57

1

67

68

'T'

'h'

'e'

' '

'o'

'p'

Try to predict 'h'

Try to predict 'e'

Try to predict ' '

Try to predict 'o'

Try to predict 'p'

Try to predict 'i'
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

D
ec

o
d

er
-o

nl
y

Tr
an

sf
o

rm
er

44

0Position:

Token:

60

1Position:

Token:

57

2Position:

Token:

67

4Position:

Token:

1

3Position:

Token:

68

5Position:

Token:

Generative Pre-trained Transformer (GPT)

44

60

57

1

67

68

'T'

'h'

'e'

' '

'o'

'p'

Try to predict 'h'

Try to predict 'e'

Try to predict ' '

Try to predict 'o'

Try to predict 'p'

Try to predict 'i'

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

D
ec

o
d

er
-o

nl
y

Tr
an

sf
o

rm
er

44

0Position:

Token:

60

1Position:

Token:

57

2Position:

Token:

67

4Position:

Token:

1

3Position:

Token:

68

5Position:

Token:
D

ec
o

d
er

-o
nl

y
Tr

an
sf

o
rm

er

It is possible to stack transformer layers (similar to RNN layers)

Generative Pre-trained Transformer (GPT)

44

60

57

1

67

68

'T'

'h'

'e'

' '

'o'

'p'

Try to predict 'h'

Try to predict 'e'

Try to predict ' '

Try to predict 'o'

Try to predict 'p'

Try to predict 'i'
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

D
ec

o
d

er
-o

nl
y

Tr
an

sf
o

rm
er

44

0Position:

Token:

60

1Position:

Token:

57

2Position:

Token:

67

4Position:

Token:

1

3Position:

Token:

68

5Position:

Token:

How to Generate Text After Model Training

C
la

ss
ifi

er

To
ke

n/
Po

s.
 E

.

D
ec

o
d

er
-o

nl
y

Tr
an

sf
o

rm
er

output is a probability
distribution over characters

randomly sample from this distribution
to generate next character!'e'

start with some
initial character

'T'
44

0Position:

Token:

C
la

ss
ifi

er

D
ec

o
d

er
 T

.

To
ke

n/
Po

s.
 E

.

start with some
initial character

'T'
44

0Position:

Token:

How to Generate Text After Model Training

output is a probability
distribution over characters

randomly sample from this distribution
to generate next character!

's'

C
la

ss
ifi

er

To
ke

n/
Po

s.
 E

. D
ec

o
d

er
-o

nl
y

Tr
an

sf
o

rm
er

'e'
57

1Position:

Token:

Keep generating text in this manner!

GPT

Demo

How to Get GPTs to Answer Prompts

A system like ChatGPT is trained in two phases

• First, it is “pre-trained” on a massive chunk of the internet using the
prediction task we described already (this prediction task does not
require any human annotations)

• Next, we “fine-tune” the model by giving it labeled training data
showing questions & answers, and over time, we improve the
model by letting humans scoring responses of the model

After this pre-training step, the model can randomly
generate text but doesn’t know how to answer prompts yet
(the model is “unaligned” with human goals at this point)

This is called “reinforcement learning with human feedback”
(RLHF)

We focused on this first step today I’ll briefly discuss fine-tuning
(but not reinforcement learning)

(Flashback) Generative Pre-trained Transformer (GPT)

44

60

57

1

67

68

'T'

'h'

'e'

' '

'o'

'p'

Try to predict 'h'

Try to predict 'e'

Try to predict ' '

Try to predict 'o'

Try to predict 'p'

Try to predict 'i'
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

D
ec

o
d

er
-o

nl
y

Tr
an

sf
o

rm
er

44

0Position:

Token:

60

1Position:

Token:

57

2Position:

Token:

67

4Position:

Token:

1

3Position:

Token:

68

5Position:

Token:

(Flashback) Generative Pre-trained Transformer (GPT)

44

60

57

1

67

68

'T'

'h'

'e'

' '

'o'

'p'

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

D
ec

o
d

er
-o

nl
y

Tr
an

sf
o

rm
er

44

0Position:

Token:

60

1Position:

Token:

57

2Position:

Token:

67

4Position:

Token:

1

3Position:

Token:

68

5Position:

Token:

The output before the classifier could
be thought of as a token embedding

that accounts for context

If we tokenized instead using words,
then we would have word embeddings

The BERT model is basically what we
showed today except without the causal
constraint & with a different tokenizer

(As we saw previously, BERT's
tokenization uses words and

sometimes subwords)

causal dependence

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

BERT (2018)

no causal dependence

The prediction at any time
step depends on the
input at all time steps

A transformer layer like
this without a causal

constraint is sometimes
called an "encoder-only"

transformer layer

This lack of causal
dependence is also

sometimes referred to as
"bidirectional"

BERT is short for
Bidirectional Encoder
Representations from

Transformers

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

Fine-Tuning
Load in an already trained model, possibly change the last few layers,

and modify it for our purposes

Sentiment analysis RNN demo
128-dim

word
embedding

0

1

3

“this movie sucks”

C
la

ss
ifi

er

LSTM

Each “layer” in orange
dotted box corresponds

to an iteration of the
RNN's for loop & these

layers share the same
parameters!

BERT-Tiny

32-dim
vector

We loaded in a pre-trained BERT-Tiny
model, which is a compressed version of
BERT-Large, trained on a large dataset
including BooksCorpus (800M words) +

English Wikipedia (2500M words)

We then fine-tuned BERT-Tiny for our
sentiment analysis neural net

Note that we fine-tuned on a relatively small
dataset (only 25000 training reviews, which is

much smaller than BooksCorpus/English
Wikipedia)

Handling Small Datasets
• Fine-tuning has an extremely important application: it allows us to

use an existing model trained on a massive dataset to help us with
a new prediction task where we might only have a small dataset

We just talked about this for the sentiment analysis demo (previous slide)

GPT pre-trained on massive dataset (exact size undisclosed…)

Fine-tune on human-annotated training dataset (of Q&A pairs and scores of
how good the system’s automatically generated Q&A pairs are), known to be

much smaller than what the model is pre-trained on

ChatGPT/GPT 4.0:

Handling Small Datasets
• Fine-tuning has an extremely important application: it allows us to

use an existing model trained on a massive dataset to help us with
a new prediction task where we might only have a small dataset

• Another extremely important strategy: data augmentation
(randomly perturb training data to get more training data)

Training label: cat

Training image Mirrored

Still a cat!

Rotated & translated

Still a cat!

State-of-the-art vision systems are all trained with data augmentation!

We just turned 1 training example in 3 training examples!

Allowable perturbations depend on data
(e.g., for handwritten digits, rotating a 6 or 9 by 180 degrees would be bad)

Interpretability/Explainability: Current State of Affairs
• There are lots of “explanation” approaches that can be used after

learning a deep net to try to understand what has been learned
• Many of these are implemented in the Python package Captum

developed by Meta/Facebook: https://captum.ai/

Crop image
(many CNNs need the input
image to be a specific size)

ResNet-18 (a CNN) predicts my
cat to be an “Egyptian cat” What pixels are important for prediction?

These are the answers from 3 different
explanation models (they give different answers!)

Warning: there’s a lot of debate as to how much we should actually
trust these explanations, as they can often be misleading

https://captum.ai/

Interpretability/Explainability: Current State of Affairs

There are neural net architectures that by design are interpretable
(e.g., prototypical part networks, neural topic models, neural decision
tree models…)

• No separate explanation approach needed since model directly
provides explanation

• My opinion: if you really care about interpretability/explainability,
then you’re better off using this sort of model

Unfortunately, deep nets with state-of-the-art prediction accuracy tend
to be difficult to interpret

It’s important to distinguish between tasks where interpretability is
important vs ones where it’s not as important

Exploratory data
analysis

prediction

write computer programs to assist analysis

Unstructured Data Analysis

Data

The dead body

Some times you
have to collect
more evidence!

Finding Structure InsightsQuestion

When? Where?
Why? How?
Perpetrator
catchable?

Puzzle solving,
careful analysis

The evidence

This is provided
by a domain

expert

Exploratory data
analysis

Answer original
question

There isn’t always a follow-up prediction problem to solve!

UDA involves lots of data ➔ write computer programs to assist analysis

Becoming good at data scientist requires you to think like a detective!

Much like how some murder mysteries are hard to solve, many data
analysis problems (unstructured or not) are hard to solve too!

Some Parting Thoughts
• Remember to visualize steps of your data analysis pipeline

• Very often there are tons of models/design choices to try

• Come up with quantitative metrics that make sense for your
problem, and use these metrics to evaluate models (think about
how we chose hyperparameters!)

• Often times you won’t have labels! If you really want labels:

• Manually obtain labels (either you do it or crowdsource)

• Set up “self-supervised” learning task

• Helpful in debugging & interpreting intermediate/final outputs

• But don’t blindly rely on metrics without interpreting results in the
context of your original problem!

• There is a lot we did not cover — keep learning!

Want to Learn More?

• One of the best ways to learn material is to teach it!

Apply to be a TA for me next term!

• Natural language processing (analyze text): 11-611

• Machine learning with large datasets: 10-605

• Computer vision (analyze images): 16-720

• Deep learning: 11-785, 10-707

• Deep reinforcement learning: 10-703

• Math for machine learning: 10-606, 10-607

• Intro to machine learning at different levels of math:
10-601, 10-701, 10-715

• Some courses at CMU:

